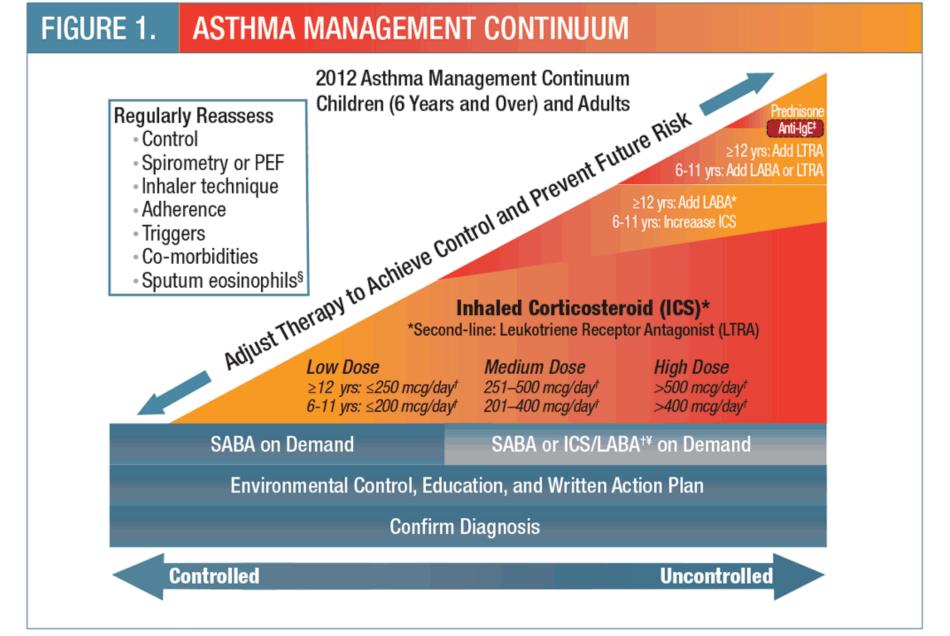
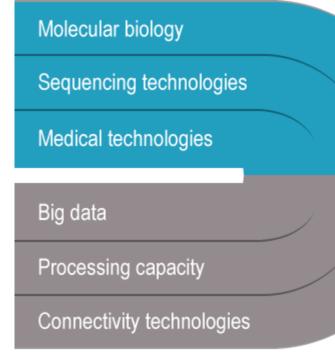

Food Allergy, Current Problems, Future Perspectives

Maia Gotua, MD.PhD maiagotua@gmail.com



Age of children

Center of Allergy& Immunology Tbilisi ALMATY 25, 2015

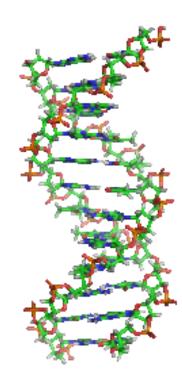

[†]HFA Beclomethasone or equivalent. *Second-line: LTRA. [‡]Approved for 12 years and over.

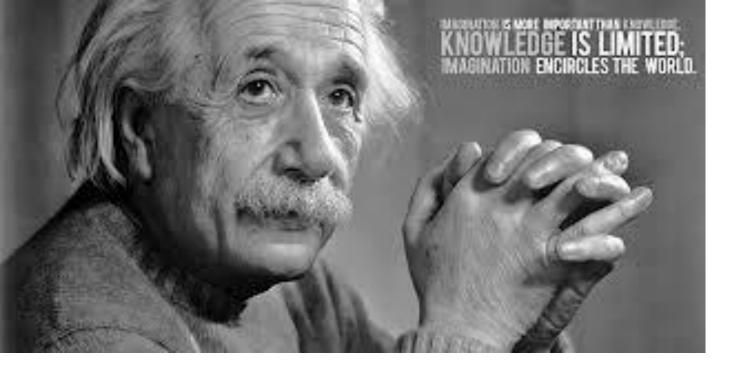
^{*}Using a formulation approved for use as a reliever.

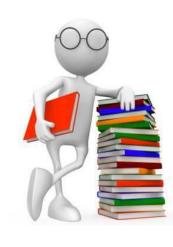
[§]In adults 18 years and over with moderate to severe asthma.

P4 Medicine: A Change of View that Changes Everything Leroy E. Hood, Institute for Systems Biology

• P4 Medicine is a term coined by biologist Leroy Hood, and is short for "Predictive, Preventive, Personalized, and Participatory Medicine."




CLINICAL PROCEDURES

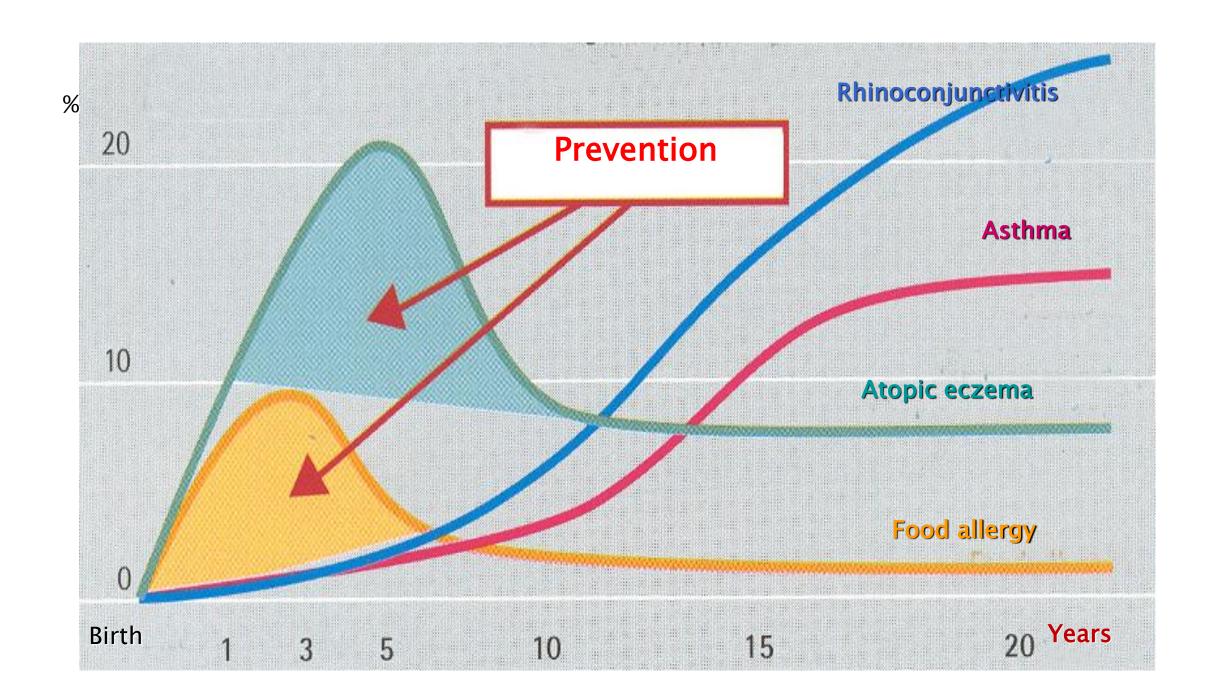

INFORMATION TECHNOLOGY

Structured, stratified and relevant approaches for P4 health care:

Predictive
Preventive
Personalized
Participatory

Albert Einstein

"To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science".


"Imagination is more important than knowledge".

ATOPY

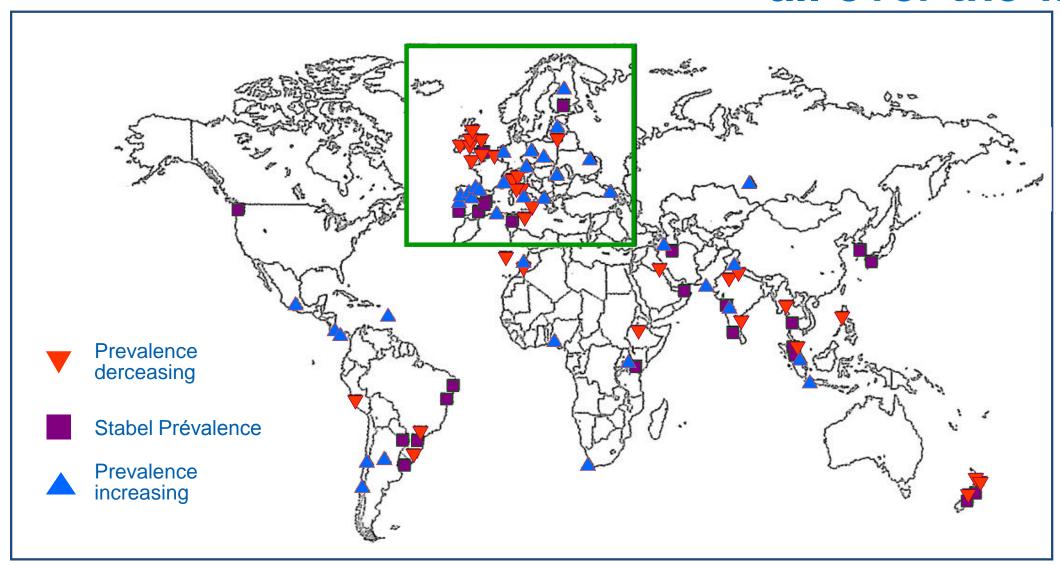
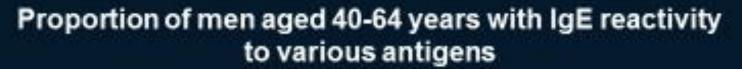
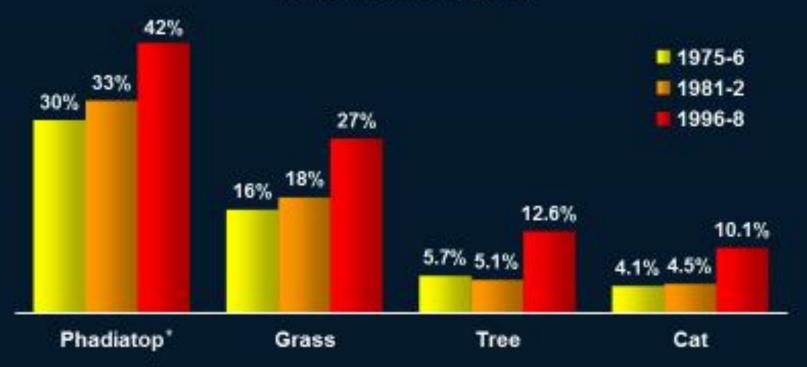

— Atopy is the genetic predilection to produce specific IgE following exposure to allergens. At a cellular level, atopy appears to result, in part, from a predisposition toward a certain response on the part of CD4+ T helper cells, called a Th type 2 (Th2) response [Borish L. Allergic rhinitis: systemic inflammation and implications for management. J Allergy Clin Immunol 2003; 112:1021.]. Th2 cells secrete large quantities of IL-4 and IL-13, which promote the production of allergen-specific IgE by plasma cells.

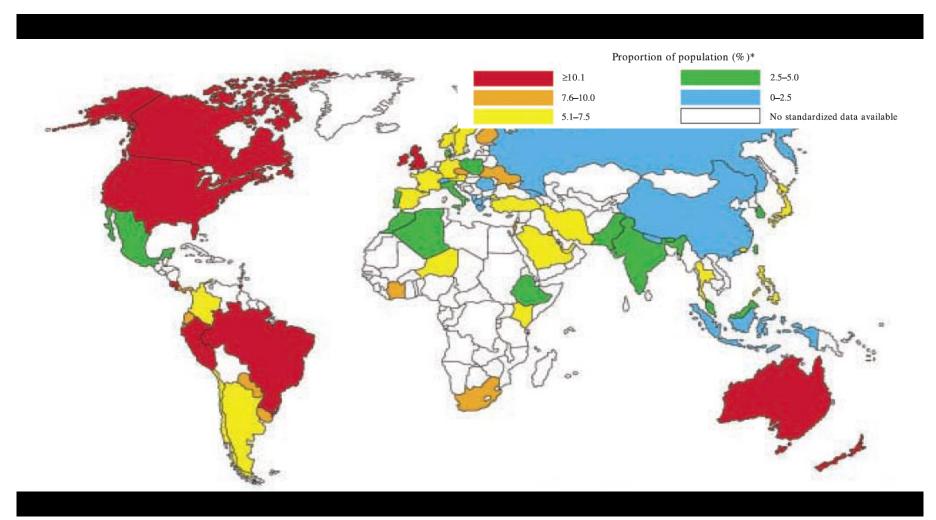
Table 2. Gell And Coombs Classification Schema Of Hypersensitivity Reactions

Classification	Effector Mechanism	Typical Clinical Manifestations
Type I Immediate	I gE	Anaphylaxis, angioedema, urticaria
Type II Cytotoxic	IgM, IgG, complement, phagocytosis	Cytopenia, nephritis
Type III Immune Complex	IgM, IgG, complement, precipitins	Serum sickness, vasculitis
Type IV Delayed	T-Lymphocytes	Contact dermatitis
Other Idiopathic	Varies	Non-specific rash




Allergy Prevalence is globally increasing all over the world

Allergy Prevalence Is Increasing in Older Age Groups



Law et al. BMJ 2005;330:1187. Linneberg. BMJ 2005;331:352.

^{*}Phadiatop is a standard mixture of 11 indoor and outdoor antigens.

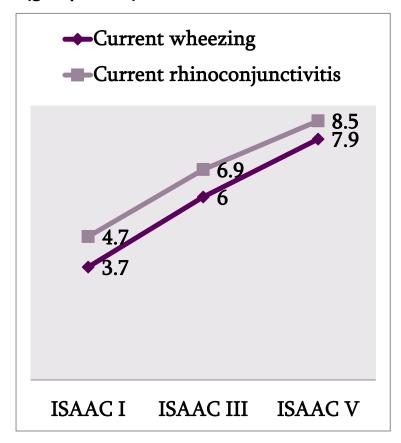
Prevalence of clinical asthma

In this report an arbitrary figure of 50% of the prevalence of 'current wheezing' in children (self-reported wheezing in the previous 12-month period in 13- to 14-year old children) has been used as the prevalence of "clinical asthma'. The prevalence rates for 'clinical asthma' reported in this report represent a conservative estimate. Data from: International Study of Asthma and Allergies in Childhood (ISAAC) and the European Community Respiratory Health Survey (ECRHS).

The peak prevalence of food allergy is approximately 6 to 8% at one year of age and then falls progressively.

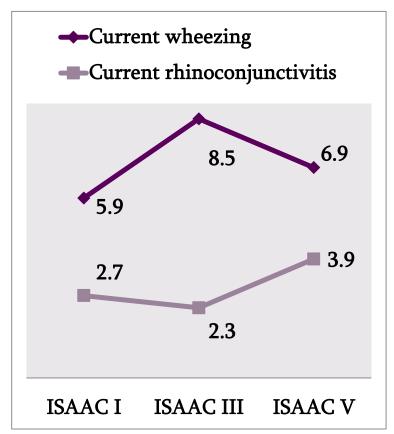
In Europe 150 millions with allergy In USA 60 millions with allergy 334 millions –with asthma worldwide

By late childhood, the prevalence is 2 to 4 percent and remains stable thereafter. Foodallergic children are at high risk for developing later allergic rhinitis and asthma

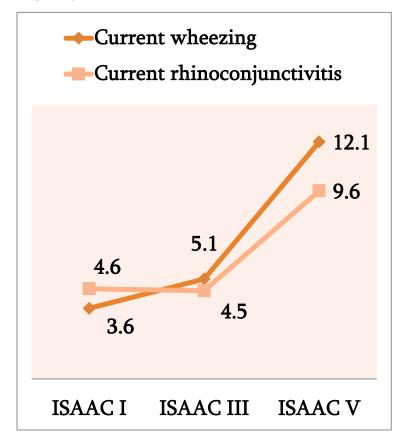

ISAAC study in Georgia

	ISAAC I	ISAAC II	ISAAC III	ISAAC V*
Study population	13 516	1 036	11 655	11 095
Study centers	Tbilisi Kutaisi	Tbilisi	Tbilisi Kutaisi	Tbilisi Kutaisi
Age group	13 -14 yrs 6-7 yrs	10-12 yrs	13 -14 yrs 6-7 yrs	13 -14 yrs 6-7 yrs
Current wheezing	3.6% 7.6%	9.2%	5.6% 7.8%	7.3% 11.2%
Current rhinoconjunctivitis	4.6% 3.3%	7.0%	5.7% 2.5%	5.7% 7.1%
Itchy rash past year	4.1% 5.7%	6.2%	4.3% 4.7%	3.8% 4.2%

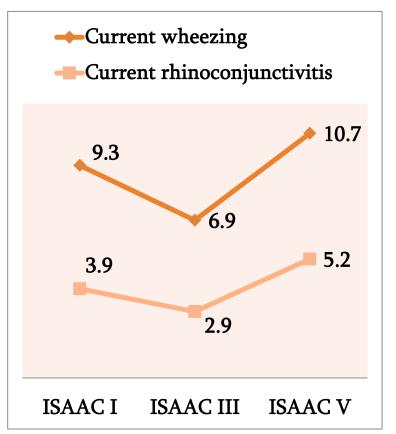
Time trends of prevalence - Tbilisi


ISAAC – Tbilisi

(group 13-14)


ISAAC – Tbilisi

(group 6-7)


Time trends of prevalence - Kutaisi

ISAAC – Kutaisi (group 13-14)

ISAAC – Kutaisi

(group 6-7)

Environmental Risk Factors Contributing to Allergic Symptoms among Georgian Schoolchildren (ISAAC V Kutaisi data)

Asthma symptoms:

1.1-1.6)].

Rhinoconjunctivitis:

family history of allergy [OR 2.3; (95% CI, 1.9-2.8)]; family history of allergy [OR 2.8; (95% CI, 2.3-3.6)]; food allergy [OR 3.0; (95% CI, 2.5-3.7)]; food allergy [OR 2.9; (95% CI, 2.2-3.6)]; drug allergy [OR 1.8; (95% CI, 1.4-2.4)], drug allergy [OR 2.8; (95% CI, 2.1-3.6)]; mother smoking at present [OR 2.2; (95% CI, 1.3-3.6)], cat exposure at present [OR 1.5; (95% CI, 1.1-2.0)]; cat exposure at present [OR 1.4; (95% CI, 1.1-1.7)]; cooking with open fire [OR 1.75; (95% CI, 1.1-2.9)]; consumption of fast-food three times or more per week consumption of cereal three times or more per week [OR 1.3; (95% CI, [OR 1.4; (95% CI, 1.1-1.7)].

Diet factors (consumption more than 3 times per week)

Asthma	ì
---------------	---

Rhinitis

Fruits [OR 0.78; (95% CI, 0.67-0.91)];

Butter [OR 0.85; (95% CI, 0.75-0.97)];

Milk [OR 0.85; (95% CI, 0.73-0.98)],

Egg [OR 0.85; (95% CI, 0.73-0.98)].

Cottage cheese [OR 0.72; (95% CI, 0.6-0.88)].

Fruits [OR 0.74; (95% CI, 0.62-0.88)];

Vegetables [OR 0.84; (95% CI, 0.71-0.98)];

Butter[OR 0.71; (95% CI, 0.61-0.83)],

Egg[OR 0.82; (95% CI, 0.68-0.98)].

Fast food [OR 1.37; (95% CI, 1.14-1.65)]

Crude Odds Ratios and Association Between Rhinoconjunctivitis Symptoms and Different Environmental Factors

		6/7 years		13/14 years	
	OR	95% CI	OR	95% CI	
Environ	mental factors				
Cat past year	1.47	0.95-2.27	1.37	1.05-1.79	
Dog past year	1.06	0.74-1.51	1.38	1.22-1.69	
Pets first year of life	1.51	1.12-2.04			
Pets past year	1.00	0.71-1.40	1.35	1.11-1.65	
Mother smoking past year	1.17	0.70-1.93	1.32	0.93-1.86	
Father smoking past year	1.15	0.9-1.49	1.04	0.85-1.25	
Traffic (frequently passing of trucks through the day)	1.41	1.10-1.80	1.53	1.27-1.85	
Oth	er factors				
Paracetamol using during last 12 months	1.50	1.08-2.07	1.26	1.02-1.55	
Antibiotics during first 12 months of child	1.56	1.21-2.02			
BMI - overweight and obese	1.10	0.79-1.53	1.03	0.77-1.36	
History of food allergy	3.19	2.46-4.15	2.39	1.94-2.96	
History of drug allergy	2.19	1.55-3.09	2.45	1.95-3.08	
Family history of allergy	3.21	2.46-4.18	2.19	1.75-2.69	
Sedent	ary behavior				
Exercise 3 and more time per week	0.75	0.50-1.11	0.81	0.65-1.02	
TV watching more than 5 hours	1.61	1.03-2.51	1.22	0.90-1.67	
Computer working more than 5 hours	1.25	0.81-1.92	1.38	1.12-1.71	

According to experts, 1 out of every 3 children have an allergy and they expect the disease to affect more than 50% of all Europeans in 10 years' time.

Food allergy is affecting the lives of million of Europeans and is on the rise

Anaphylaxis

- Food allergies account for 35% 50% of all cases of anaphylaxis. Fatal food anaphylaxis is most often caused by peanuts (50-62%) and tree nuts
- At least 40 people in the United States die each year as the result of insect stings. Life-threatening reactions to insect stings occur in 0.4% to 0.8% of children and 3% of adults.
- Latex allergy affects between 5% and 15% of healthcare workers, but less than 1% of the general population. Between 24% and 60% of people with spina bifida have latex allergy.
- Anaphylactic reactions to penicillin cause 400 deaths.
- Between 6% and 10% of adverse drug reactions are allergic or immunologic in nature.

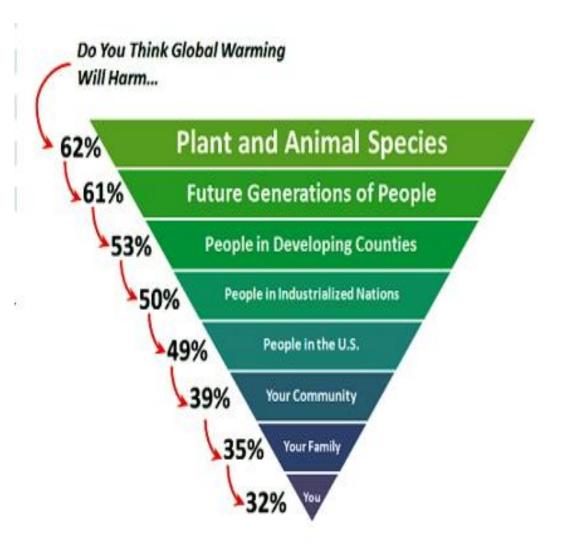
Why allergy prevalence is increasing?

Genotype: no change

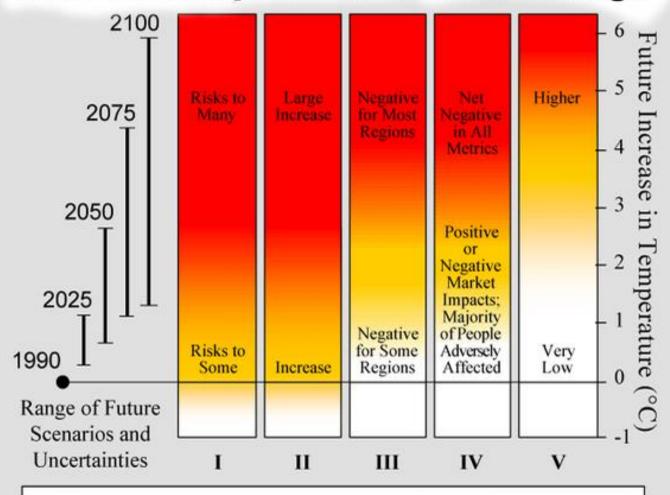
The decrease of infections and microbe exposure in the early life might be associated with the increase of allergic diseases, asthma and auto-immune disease.

Factors on the individu (25%):

- Immunological situation
- In utero environment
- Event in the early life

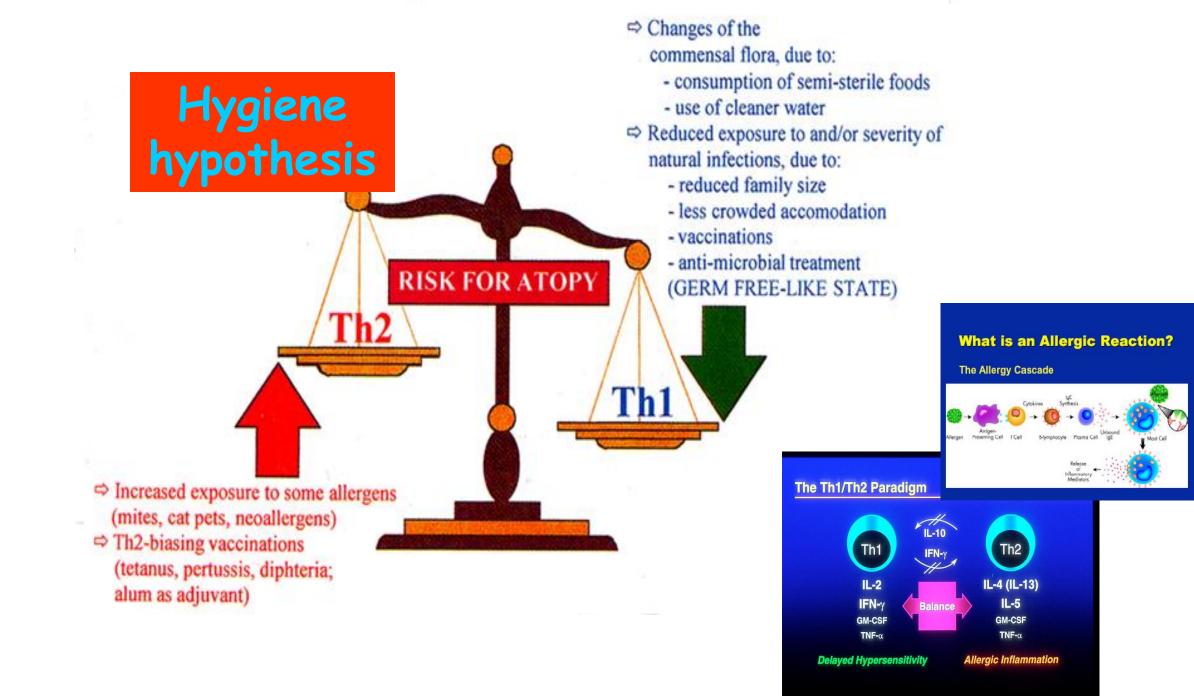


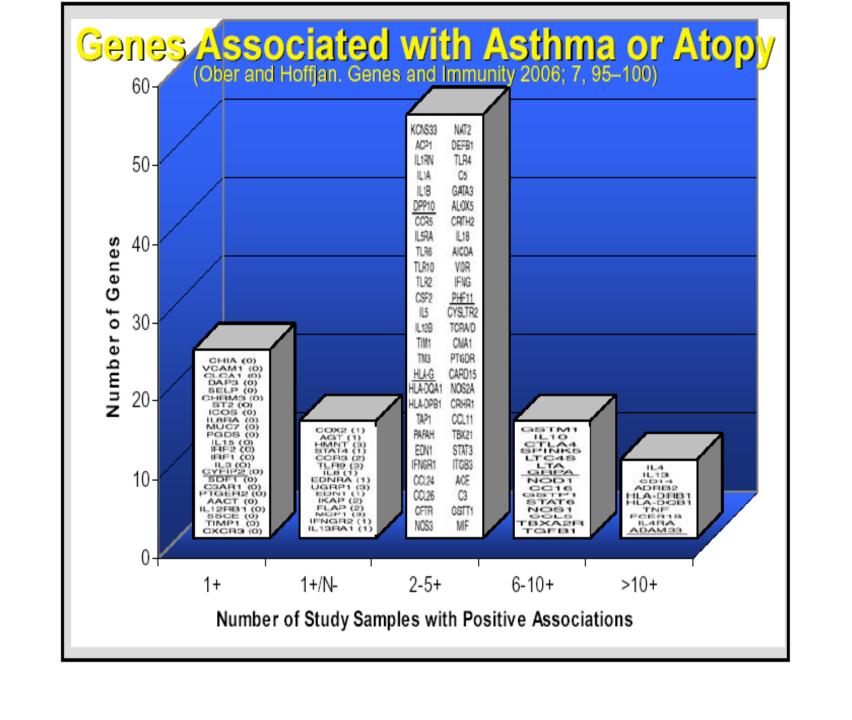
New factors


- Allergens
- Polutions

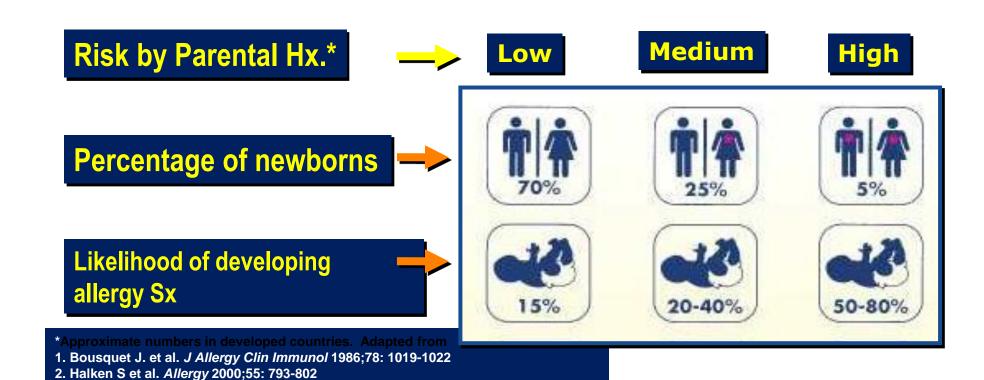
Factors who are changing

- Allergens 7?
- Irritants: smoking, polutions...
- Obesity 7
- Diet: vitamins and antioxydants
- Physical activities
- Stress 7

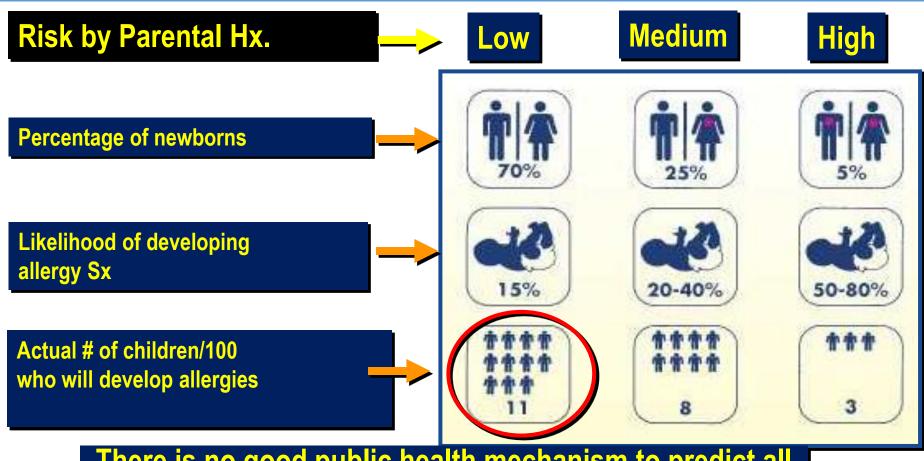



Risks and Impacts of Climate Change

- I Risks to Unique and Threatened Systems
- II Frequency and Severity of Extreme Climate Events
- III Global Distribution and Balance of Impacts
- IV Total Economic and Ecological Impact
- V Risk of Irreversible Large-Scale and Abrupt Transitions

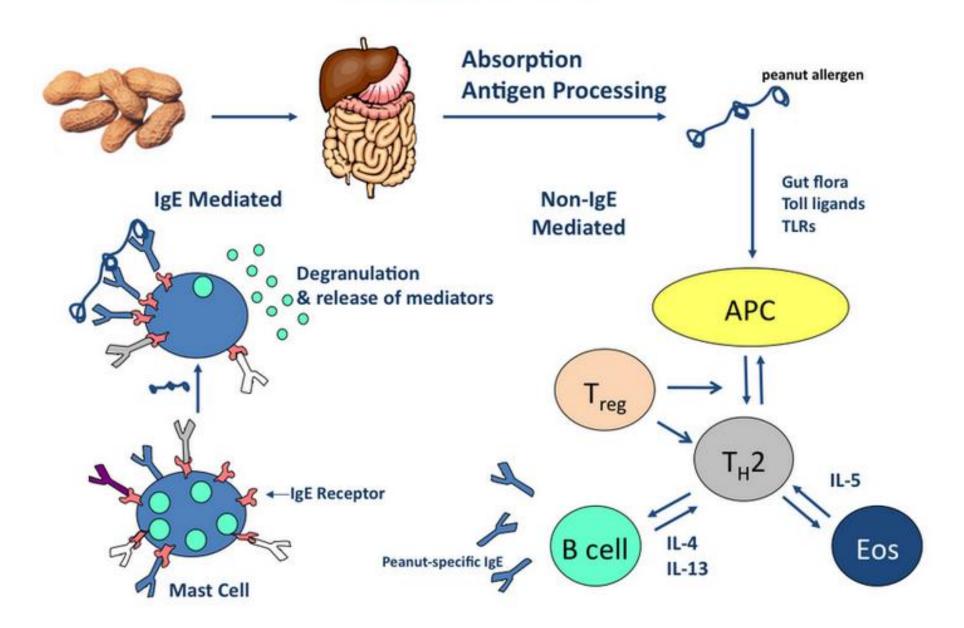


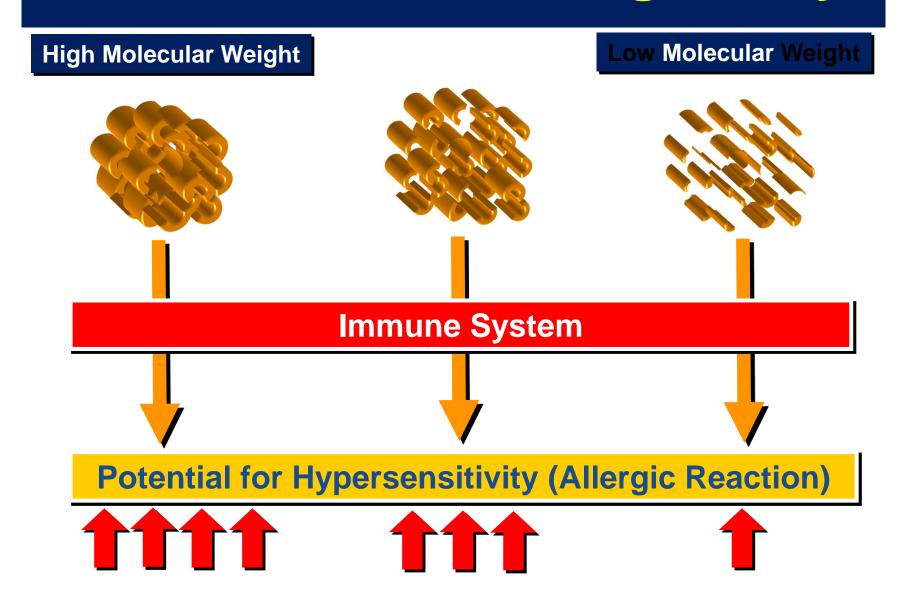
Identifying "At Risk" Infants


One parent or sibling with history of AD, urticaria, allergic rhinitis (hay fever) or asthma = "At Risk" by Family History

3. Kjellman N. et al. Acta Paediatr Scan 1977;66: 565-71

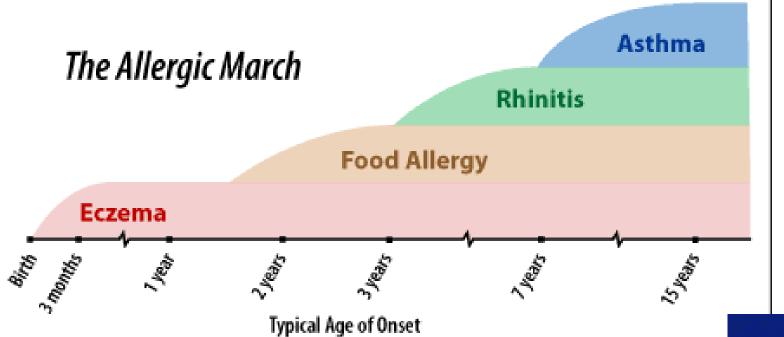
4. Exl BM, Nutr Res 2001;21: 355-79

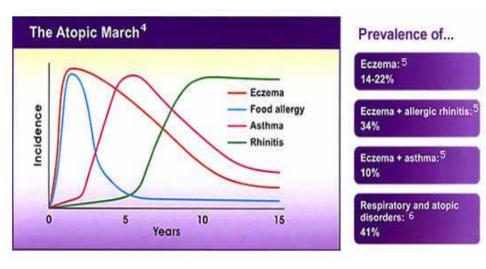

Predicting Pediatric Allergy


There is no good public health mechanism to predict all children who will develop allergy. At least half of infants who go on to develop allergy could not have been predicted

Mechanism of Food Allergen Sensitization

Failure of Oral Tolerance

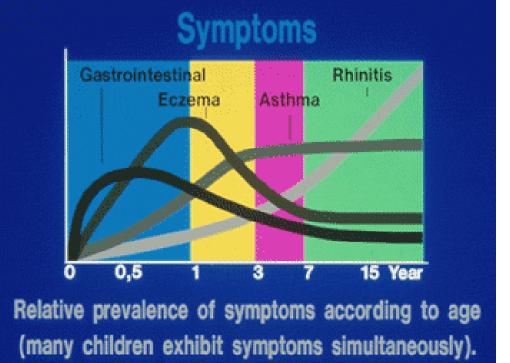

Protein size and Allergenicity



History of ≥4 wheezing episodes with at least one physician diagnosed and either		
One (or more) of the major criteria	Or	Two (or more) of the minor criteria
 Parental history of asthma 		 Eosinophilia (≥4%)
 Skin test positive to aero-allergens 		 Wheezing unrelated to colds
 Eczema (physician-diagnosed atopic dermatitis) 		 Allergic sensitization to milk, egg, or peanuts

Adapted from reference[216]

- Food allergen exposure is usually through ingestion, but the inhalation of food proteins in the form of dust or aerosolized particles may also trigger respiratory symptoms.
- Isolated asthma or rhinitis secondary to food allergy is reported, but is rare. More commonly, respiratory symptoms of food allergy are accompanied by skin and/or gastrointestinal manifestations. Foods can elicit asymptomatic airway hyperreactivity or symptomatic asthmatic responses.
- In addition, systemic anaphylactic reactions often have a respiratory component.


Eczema Gl Otitis Allergic Asthma Adult disorders media rhinitis asthma

As many as 40% of infants with atopic dermatitis may become asthmatic by age 4

Sasai K, et al. J Periatr. 1996;128:834-40

It is estimated that 79% of children with otitis media have been diagnosed with allergic rhinitis

ETAC™ Study Group Pediatr Allergy Immunol. 1998;9:116-24

DEFINITION OF FOOD ALLERGY

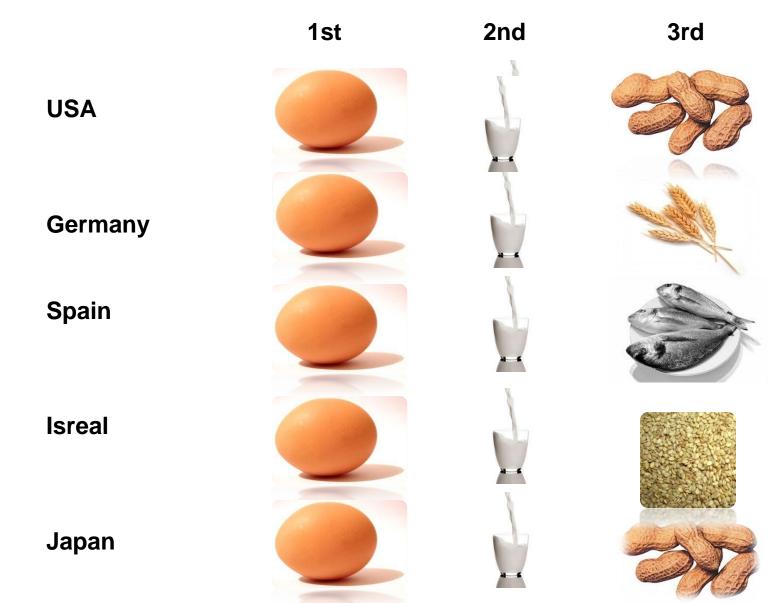
The terms "allergy" and "hypersensitivity" are used interchangeably to refer to an abnormal immunologic reaction to food. Such reactions can be mediated by IgE molecules directed against specific food proteins that activate mast cells and basophils, or can arise from other cellular processes involving eosinophils or T cells

	IgE Mediated	Mixed Mechanism	Non-IgE Mediated
Skin	Acute urticaria Angioedema	Atopic dermatitis	Dermatitis herpetiformes
GI	Immediate GI hypersensitivity Oral allergy syndrome	Eosinophilic gastroentero- colitis	Protein induced enterocolitis
Respiratory	Acute RAD (High risk anaphylaxis)	Asthma (Risk of anaphylaxis)	Food induced hemosiderosis Heiner syndrome
	Adopted from HA Sampson, 2000	Common	Uncommon

Nonimmunologic adverse food reactions

Gastrointestinal disorders	
Structural abnormalities	
Hiatal hernia	
Pyloric stenosis	
Tracheoesophageal fistula	
Hirschsprung's disease	
Carbohydrate malabsorption	
Lactase deficiency	
Sucrose-isomaltase deficiency	
Pancreatic insufficiency (cystic fibrosis)	
Gastroesophageal reflux	
Peptic ulcer disease	
Gallbladder disease	
Toxic reactions	
Seafood	
Scromboid poisoning (fresh tuna and mackerel)	
Ciguatera poisoning (grouper, snapper)	
Saxitoxin (shellfish)	
Other food poisoning	
Clostridium botulinum	
Staphylococcus aureus	
Fungal toxins (aflatoxins, trichothecanes, ergot)	

Intolerances
Pharmacologic agents
Caffeine
Theobromine (tea, chocolate)
Histamine-like compounds (fish, wine, sauerkraut)
Tryptamine (tomato, plum)
Tyramine (aged cheeses, pickled fish)
Serotonin (banana, tomato)
Phenylethylamine (chocolate)
Glycosidal alkaloid solanine (potatoes)
Alcohol
Flavorings and preservatives
Sodium metabisulfite
Monosodium glutamate
Neurologic reactions
Auriculotemporal syndrome
Psychologic reactions
Food phobias
Food aversions
Accidental contaminations
Pesticides
Antibiotics (if allergy present)


Adapted with permission from: Sampson HA. Differential diagnosis in adverse reactions to foods. J Allergy Clin Immunol 1986; 78:212. Copyright © 1986 Elsevier Science, Inc.

The most common foods that trigger food hypersensitivity reactions involving the respiratory tract are peanut, tree nuts, fish, shellfish, hen's egg, cow's milk, and seeds.

Wheat and soybean are the most frequently implicated food allergens in inhalation induced reactions, although hen's egg and seafood can also cause these types of reactions

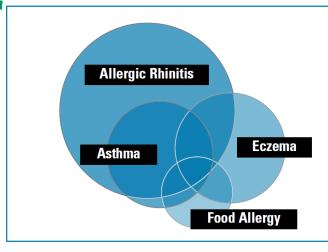
3 Main Allergens in Different Populations

Guidelines for the Diagnosis and Management of Food Allergy in the United States: October 13, 2010.

Clinical manifestations of IgE-mediated reactions

Clinical features

Dermatologic - Pruritus, flushing, urticaria/angioedema, diaphoresis


Eyes - Conjunctival injection, lacrimation, periorbital edema, pruritus

Respiratory tract - Nose/oropharynx (sneezing, rhinorrhea, nasal congestion, oral pruritus, metallic taste), upper airway (hoarseness, stridor, sense of choking, laryngeal edema), lower airway (dyspnea, tachypnea, wheezing, cough, cyanosis)

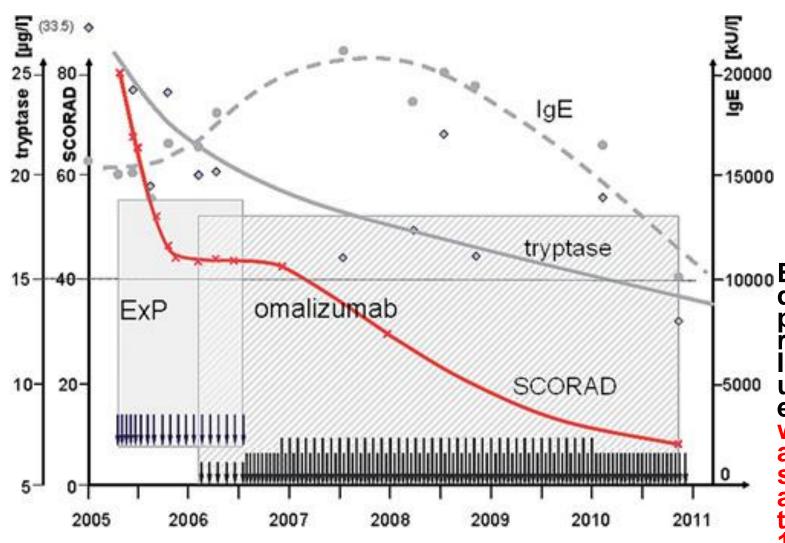
Cardiovascular - Conduction disturbances, tachycardia, bradycardia (if severe), arrhythmias, hypotension, cardiac arrest

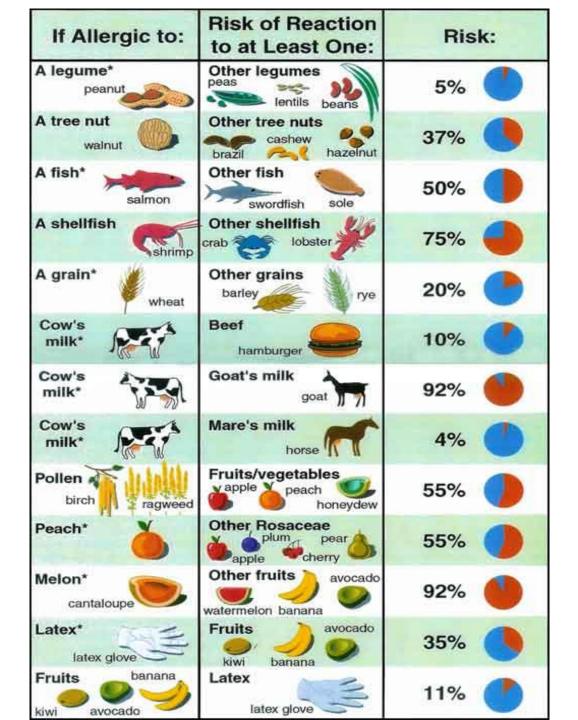
Gastrointestinal - Nausea/vomiting, abdominal cramping, bloating, diarrhea

Neurologic - Sense of impending doom, syncope, dizziness, seizures

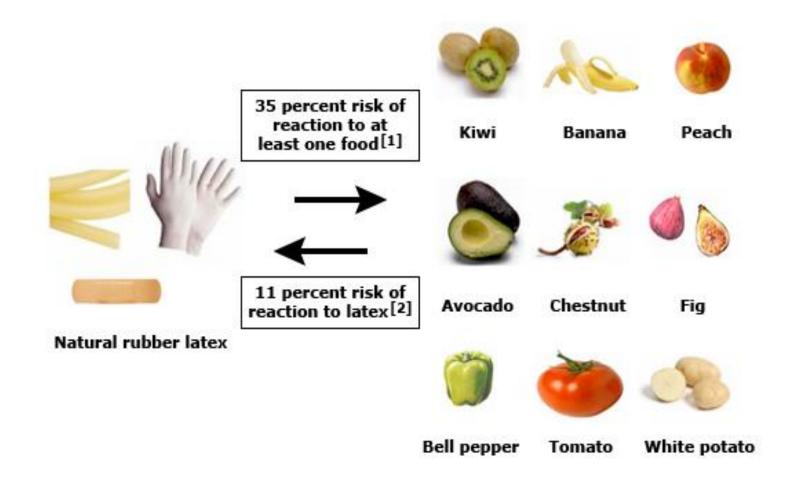
Atopic diseases tend to cluster in individuals and in families.

Common Symptoms of Food Allergies

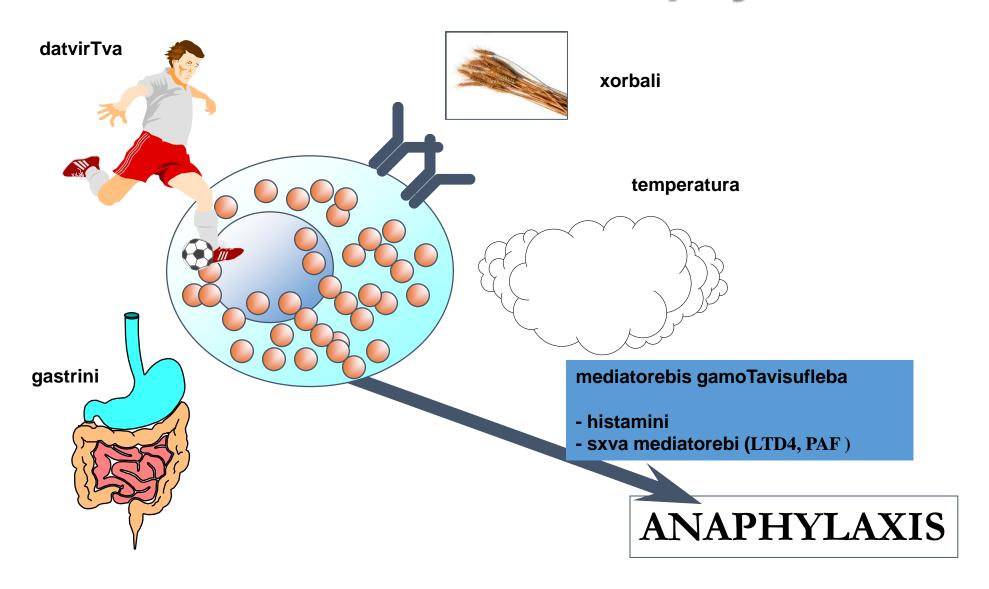

Among atopic patients of all ages, those with atopic dermatitis tend to have the highest IgE levels followed by atopic asthma, perennial allergic rhinitis, and seasonal allergic rhinitis.



Elevated total IgE levels can be demonstrated in 80 to 85 percent of patients with AD, although the precise relationship between the elevated IgE levels and disease pathogenesis is unclear. Some individuals have extremely high total IgE levels. Children with very high IgE (ie, >10,000 kU/L) are at greater risk for severe AD, sensitization to food and inhaled allergens, and anaphylaxis, compared allergens, and anaphylaxis, compared to children with lesser elevations (ie, 1000 to 4000 kU/L). In patients with AD, the rate of sensitization to foods ranges from 30 to 80 percent, depending upon the population studied, although the actual rate of confirmed food allergy is much lower. much lower.


Some cross-reactions between inhalant allergens and food allergens

Inhalant allergy	Food allergy
Birch pollen	Nuts, apple, pear, peach, plum, cherry, carrot, peanut, soy
Ragweed pollen	Melon, banana
Grass pollen	Tomato, peanut, pea, wheat, rye
Latex	Banana, chestnut, kiwi, avocado
Chironomids	Crustaceans


Importance of considering 3-dimensional protein structure in prediction cross-reactivity

Patterns of allergic cross-reactivity between latex and food

Exercise induced Anaphylaxis

Diagnostics of Food allergy

- History and physical examination
- Prick skin Testing (The general sensitivity > 90 % and specificity –50% of skin prick testing for the diagnosis of food allergy)
- In vitro testing (CAP-FEIA/RASTs) <u>Specific IgE Phadia</u> (Clinical performance is expressed as sensitivity- 84-95 %, and specificity, ranging from 85-94%).
- Gastroenterologic tests
- Elimination diets
- Food challenges

Based primarily upon studies performed in the United States in children with a history of food allergy older than two years of age, the 95 percent predictive levels for egg, milk, peanut, tree nuts, and fish are as follows (Sampson HA)

- Egg, 7 kUA/L (2 kUA/L for children less than two years of age)
- Milk, 15 kUA/L (5 kUA/L for children less than two years of age)
- Peanut, 14 kUA/L
- Tree nuts, approximately 15 kUA/L
- Fish, 20 kUA/L

Thus, a child over two years old with a convincing history of egg allergy has a greater than 95 percent likelihood of experiencing an allergic reaction to egg upon challenge if their egg-specific IgE exceeds 7 kUA/L. Therefore, challenge is unnecessary in such children. Equivalent predictive positive levels for soy and wheat have not yet been established.

Diagnostics of Food allergy

- FOOD DIARIES Food diaries are written records of everything that is ingested by a patient, including all foodstuffs, beverages, condiments, and candies. Although rarely diagnostic on their own, food diaries may be helpful at times in identifying a food that was overlooked by the patient, a food containing hidden ingredients, or patterns of reactions (eg, in association with exercise, alcohol, or antiinflammatory medications).
- FOOD CHALLENGES Oral food challenges are structured protocols in which the patient ingests a suspect food under clinician supervision. Food challenges should only be performed by allergy specialists familiar with food-allergic reactions and in settings equipped with the necessary medications, equipment, and staff to treat anaphylaxis. Food challenges are covered in detail separately.
- UNVALIDATED METHODS Patients may present after having food allergy tests performed that have not been validated. These can include food-specific IgG and IgG4 tests, which typically yield multiple positive results and may represent a normal immune response to food.

World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines

Alessandro Fiocchi, (Chair), Jan Brozek, Holger Schu"nemann, (Chair), Sami L. Bahna, Andrea von Berg, Kirsten Beyer, Martin Bozzola, Julia Bradsher, Enrico Compalati, Motohiro Ebisawa, Maria Antonieta Guzman, Haiqi Li, Ralf G. Heine, Paul Keith, Gideon Lack, Massimo Landi, Alberto Martelli, Fabienne Rancé, Hugh Sampson, Airton Stein, Luigi Terracciano, and Stefan Vieths

Allergic and asthmatic reactions to food additives

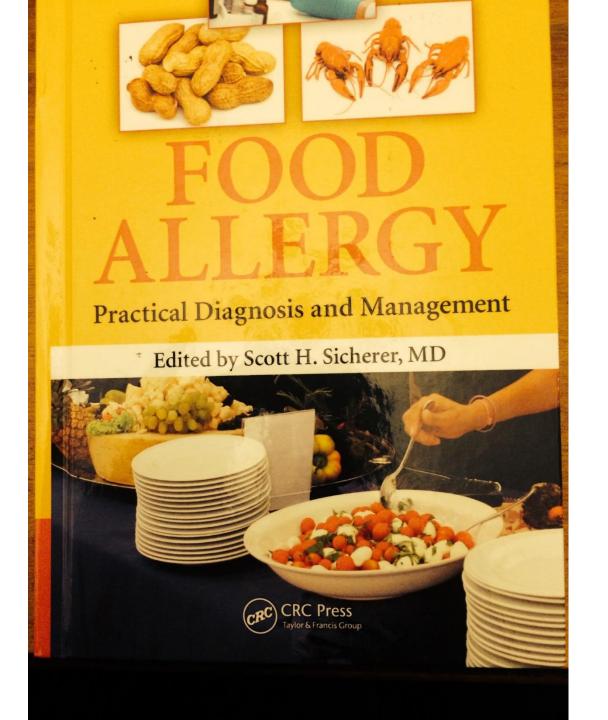
Of the thousands of food additives in use, only a small number have been implicated in allergic or allergic-like reactions. Symptoms include urticaria and/or angioedema, asthmatic reactions, and anaphylaxis.

Clues that a patient may be reacting to a food additive include reactions that occur within minutes to a few hours of eating, a convincing history of similar reactions to several apparently unrelated foods, and reactions to commercially-prepared forms of foods that are tolerated when prepared at home. However, allergy to a nutritive food is far more likely than allergy to an additive, so this must be considered first in the differential diagnosis.

Ronald A Simon, MD, 2014

Sulfites

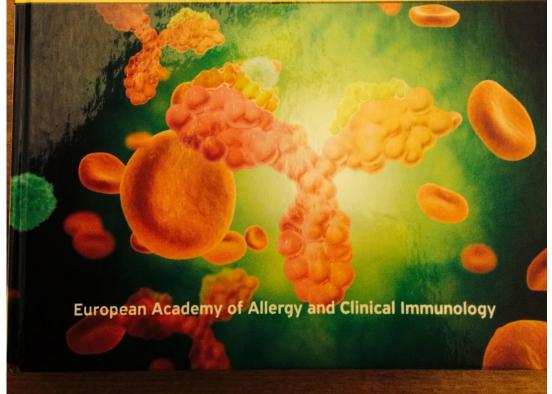
• Sulfites can cause potentially serious asthmatic reactions in as many as 5 percent of patients with asthma, whereas individuals without asthma are rarely affected. Sulfite-sensitive patients more often have severe and/or steroid-dependent asthma.


Patients with asthma who experience exacerbations after apparent exposure to sulfites should be counseled to avoid sulfite-containing foods and (if possible) referred to an allergy specialist with experience in evaluating for sulfite sensitivity

Sulfite-containing foods

High content	Low content (<10 ppm)*					
Dried fruit (excluding dark raisins and prunes)	Corn starch					
Lemon juice (nonfrozen)	Hominy					
Lime juice (nonfrozen)	Frozen potatoes					
Wine	Maple syrup					
	Imported jams and jellies					
Molasses	Fresh mushrooms					
Sauerkraut juice	Malt vinegar					
Grape juice (white, white sparkling, pink sparkling, red sparkling)	Dried cod					
	Canned potatoes					
Moderate content	Beer Dry soup mix					
Dried potatoes Wine vinegar Gravies, sauces						
	Soft drinks					
	Instant tea Pizza dough (frozen) Pie dough Sugar (especially beet sugar)					
Fruit topping						
Maraschino cherries						
Pectin						
Shrimp (fresh)	Gelatin					
Sauerkraut	Coconut					
Pickled peppers	Fresh fruit salad					
Pickled cocktail onions	Domestic jams and jellies					
Pickles/relishes	Crackers					
	Cookies					
	Grapes					
	High fructose corn syrup					

^{*} Foods with low sulfite content have not been implicated in inducing reactions in sulfite-sensitive individuals.


Courtesy of Ronald A Simon, MD.

Food Allergy and Anaphylaxis Guidelines

Translating knowledge into clinical practice

WAO - ARIA - GA²LEN consensus document on molecularbased allergy diagnostics <u>Giorgio Walter Canonica</u> et al.

World Allergy Organ J. 2013; 6(1): 17.

MA diagnostics allows for an increased accuracy in allergy diagnosis and prognosis and plays an important role in three key aspects of allergy diagnosis:

- (1) resolving genuine versus cross-reactive sensitization in polysensitized patients, thereby improving the understanding of triggering allergens;
- (2) assessing, in selected cases, the risk of severe, systemic versus mild, local reactions in food allergy, thereby reducing unnecessary anxiety for the patient and the need for food challenge testing;
- (3) identifying patients and triggering allergens for specific immunotherapy (SIT).

Mapa możliwych reakcji krzyżowych

		oCAP	ISAC test	Owoce	Warzywa	Orzechy	Strączkowe	Ziarna	Przyprawy	Pytki traw	Pylici chwastów	Pyłki drzew	lateks	Plešnie	Roztocza	Zwierzęta	Лајко	Mleko	Mięso	Ryba	Owace morza	Pasorzyty	Owady	Jady
	Źródło	skladnik	Rodzina bialek/ funkcja																			_		
	Roztocze	Der p 1	Cysteine protease		\neg		\neg															\neg	\Box	
		Der p 2	NPC2 family																					
8	l	Der p 10	Tropomyosin																					
Roztocza	l	Der f 1	Cysteine protease																					
8	l	Der f 2	NPC2 family																					
	l	Eur m 1	Cysteine protease																					
		Eur m 2	NPC2 family																					
	Pies	Can f 1	Lipocain																					
		Can f 2	Lipocain																					
		Can f 3	Serum albumin																					
Zwierzęta	Kot	Fel d 1	Uteroglobulin																					
erz		Fel d 2	Serum albumin																					
N/A		Fel d 4	Lipocain																					
	Mysz	Mus m 1	Lipocain																					
	Koń	Equ c 3	Serum albumin																					
	Świnia	Sus s PSA	Serum albumin																					
	Alternaria	Alta 1	Acidic glycoprotein																					
		Alt a 6	Enolase																					
<u>e</u> .	Aspergillus	Asp f 1	Mitogilin family																					
Pleśnie		Asp f 2	Fibringgen Binding Proteins																					
ž	l	Asp f 3	Peroxysomal protein																					
	l	Asp f 4	Unknown																					
		Asp f 6	Mn supeoxidde dismutase																					
	Cladosporium	Cla h 8	Mannitol dehydrogenase																					
																							\Box	
	Karaluch	Blag 1	Cockrach group 1																					
-5	l	Blag2	Aspartic protease																					
Karaluch	l	Bla g 4	Calycin																					
2		Bla g 5	Glutathione S-transferase																					
		Blag7	Tropomyosin																					
	Pszczoła	Api m 1	Phospholipase																					
36		Api m 4	Melittin																					
Jady	Osa	Pol d 5	PR-1																					
7		Ves v 1	Phospholipase A1																					
		Ves v 5	PR-1																					
Pasożyty	Anisakis	Anis 1	Serine protease inhibitor																					
		Ani s 3	Tropomyosin																					

			ISAC test			va.			2	٥	Ш	ш						ő		1
	Źródło	skladnik	Rodzina bialek/ funkcja																	
Roślin	ne														_					
	Kliwi	Acd d 1	Cysteine protease															_		_
	l .	Acd d 2	Thaumatin-like protein																	\perp
	l .	Acd 5	Kiwelin																	_
		Acd 8	PR-10																	
	Seler	Api g 1	PR-10				_											_	_	_
	Marchew	Dau c 1	PR-10				_											_	_	_
	Jabłko	Mal d 1	PR-10				_											_	_	_
	Brzoskwinia	Pru p 1	PR-10			_	_	_		_	-	ш	_	_	_	-	\rightarrow	\rightarrow	-	+
Ď.		Pru p 3	LTP				_	_	_	_	_	ш	_	ш	-	ш	\vdash	_	_	-
č		Pru p 4	Profilin				_			_	_	\vdash	_		_	-	\rightarrow	\rightarrow	_	-
roślinnego	Orzech brazylijski	Bre e 1	Storage protein 25 albumin	\vdash	\rightarrow	\rightarrow	-	-	_	-	-	\vdash	_	_	_	-	\rightarrow	\rightarrow	_	-
8	Orzech nerkowca	Ana o 2	Storage protein 25 albumin	\vdash	\rightarrow	\rightarrow	-	-	\rightarrow	-	-	\vdash	_	ш	_	-	\rightarrow	+	+	-
	Orzech laskowy	Cor a 9	Storage protein 25 albumin		_	_	_	_	-	-	-	\vdash	_	_	_	-	\rightarrow	+	-	-
<u>c</u>	l .	Cor a 8	LTP				_	-	-	-	-	\vdash	_	-	_	-	\rightarrow	+	-	-
- A	0	Cor a 1.0401	Profilin	-	$\overline{}$	\rightarrow	-	-	\rightarrow	-	-	\vdash	_	_	_	\rightarrow	\rightarrow	+	+	+
pochodzenia	Orzech włoski	Jug r 1	Storage protein, 25 albumin		_	_	_	-	\rightarrow	-	-	\vdash	_	_	_	-	\rightarrow	+	+	+
8	form street	Jug r 3 Ses i 1	LTP				_	-	\rightarrow	+	-	\vdash	-	-	-	\rightarrow	\rightarrow	+	+	+
	Sezam ziarno		Storage protein 25 albumin	-	+	\rightarrow	-	-	\rightarrow	-	-	\vdash	_	-	-	-	\rightarrow	+	+	+
E	Orzech ziemny	Ara h 1	Storage protein 25 albumin	-	-		-	-	\rightarrow	-	-	\vdash	_	_	_	-	\rightarrow	+	+	+
ă	l .	Ara h 2 Ara h 3	Storage protein 25 albumin Storage protein 25 albumin	-			_	-	\rightarrow	_	-	\vdash	_	-	_	-	\rightarrow	+	+	+
Рокагту	l .	Ara h 8	PR-10	-	_		-	-	_	_	-	\vdash	_	_	_	-	\rightarrow	+	+	+
	l .	Ara h 9	LTP							_	-	$\overline{}$			_	$\overline{}$	$\overline{}$	+	+	+
	Soja	Gly m 4	PR-10								_	\vdash	_		_	-	$\overline{}$	+	+	+
	1	Gly m 5	Storage protein, Beta-conglycinin				+				_	\vdash				$\overline{}$	\rightarrow	+	+	+
		Gly m 6	Storage protein, Glyclein	$\overline{}$	+		$\overline{}$		\rightarrow	$\overline{}$	-	\vdash		-		$\overline{}$	$\overline{}$	+	+	+
	Pszenica	Gliadin	Gliadin		+							\vdash				\neg	\vdash	+	+	+
		Tri a 19	Omega 5 gliadin		\neg											\neg		\neg	\neg	$^{+}$
	I	Tri a 18	Agglutinin isolectin 1															\neg		+
	1	Tri a aA_TI	Alpha-Amylase/Trypsin inhibitors															\neg		\pm
																		\top		$^{+}$
	Trawa bermuda	Cyn d 1	1 grupa alergenów traw																	
	Tymotka łąkowa	Phi p 1	1 grupa alergenów traw																	T
2		Phi p 2	2 grupa alergenów traw																	
traw	l .	Phl p 4	Berberine bridge enzyme																	\top
100	l .	PM p 5	5 grupa alergenów traw																\top	Т
臺	l .	Phl p 6	5 grupa alergenów traw																	
Δ.	l .	Phl p 7	Polcalcin		\perp	\perp	_				\vdash	ш						_	_	_
	l .	Phi p 11	Trypsin inhibitor		\perp		_		_	_	_	ш	_		_	\mathbf{H}	\rightarrow	\rightarrow	_	-
		Phl p 12	Profilin				-		_	-	-	\vdash	-	_	_	\rightarrow	\rightarrow	+	+	+
	Olcha	Ale e I	PR-10		_	_	-	-	-	-	-	\vdash	-	-	-	\rightarrow	\rightarrow	+	+	+
	Brzoza	Aln g 1 Bet v 1	PR-10			-	_	-		-	-	\vdash	_		_	$\overline{}$	\rightarrow	+	+	+
	BYZOZA	Bet v 2	Profile		-							\vdash	_		_	$\overline{}$	$\overline{}$	+	+	+
	l .	Bet v 4	Polcalicin		_		_		=:			Н				$\overline{}$	$\overline{}$	\pm	+	+
_	l .	Bet v 6	Isoflavone reductases	-	$\overline{}$	$\overline{}$	-				-	Н			$\overline{}$	$\overline{}$	$\overline{}$	$^{+}$	-	+
drzew	Leszczyna	Cor a 1	PR-10				-											\neg	\neg	\top
2	Cyprys	Cup a 1	Pectate lysae															\neg	\top	Т
	Cedr japoński	Cryj1	Pectate lysae																	Т
菱	Oliwka	Ole e 1	Trypsin inhibitor																	
	l .	Ole e 2	Profilin							_	_	\Box						_	_	4
	l .	Ole e 7	LTP	\rightarrow	+	\rightarrow	-	-	\rightarrow	-	-	\vdash	_	-	_	-	\rightarrow	+	+	-
	Platan	Ole e 9	Glucanase	_	-	\rightarrow	-	-	\rightarrow	+	-	\vdash	_	-	-	\rightarrow	\rightarrow	+	+	+
	Platan	Pla a 1 Pla a 2	Invertase inhibitor	-	-	\rightarrow	-	-	\rightarrow	+	-	\vdash	-	-	-	$\overline{}$	\rightarrow	+	+	+
		Pid d 2	Polygalacturonases	-	$\overline{}$	\rightarrow	_	-	\rightarrow	+	-	\vdash	_	-	_	-	\rightarrow	+	+	+
	Ambrozja	Amb a 1	Pectate lyase	-	+	\rightarrow	-	_		+	-	\vdash	_		_	$\overline{}$	$\overline{}$	+	+	+
× ×	Bylica	Art. v 1	Defensin	-	$\overline{}$	$\overline{}$	-	-		-	-	Н				$\overline{}$	$\overline{}$	$^{+}$	-	+
astów	- J	Art. v 3	LTP							_	-	$\overline{}$		-	$\overline{}$	$\overline{}$	$\overline{}$	\pm	-	+
	Parietaria	Parj 2	LTP				_			_	-	$\overline{}$				$\overline{}$	$\overline{}$	\pm	\pm	+
ž.	Solanka kolczysta	Sal k 1	Pectin methyleasterase															\pm	\pm	\pm
	Komosa	Che a 1	Trypsin inhibitor		$\overline{}$	\neg	-			_	-	$\overline{}$		$\overline{}$	$\overline{}$	\neg	$\overline{}$	$^{-}$	$^{-}$	$^{-}$
7	Mercury annual	Mer a 1	Profilin																	T
	Babka lancetowata		Pectase lyase																	T
																				T
CCD	Bromelina	Ana c 2	CCD																	
		MUXF3 CCD	CCD				_				_	\vdash	_		_	$\overline{}$				4
				-	-	\rightarrow	-		-			\vdash	_		-	\vdash	\vdash	+	+	+
	Lateks	Hev b 1	Rubber elongation factor	\vdash	$\overline{}$	\rightarrow	_	-	-		_	\vdash	_	-	_	-	-	+	+	+
48	l .	Hev b 3	Small rubber particle protein	-	$\overline{}$	\rightarrow	-	-	\rightarrow	_	-	\vdash	-	-	_	\rightarrow	\rightarrow	+	+	+
3	l .	Hev b 5 Hev b 6	Acidic protein Hevenin		+	_	_	-	-	-		\vdash	_	_	_	$\overline{}$	\rightarrow	+	+	+
Lateks	l .	Hev b 8	Profilin				_			-		Н		Н	-	$\overline{}$	$\overline{}$	+	+	+
_	l .	Hev b 9	Glycolytic Enzyme				_					\vdash				$\overline{}$	$\overline{}$	\pm	+	+
	l .	Hev b 11	Chitinases		+		-				Н	Н						\pm	-	+
	1															_				
Niero	ślinne					_								_						
9	Mieko	Bos d 4	Alpha-lactalbumin				_			-								_		1
ž		Bos d 5	Beta-lactoglobulin	_	\perp	\rightarrow	-		_	_		\vdash	Ų	\Box			\vdash	+	\perp	+
	Krowa	Bos d 6	Serum albumin	-	+	\rightarrow	+	\vdash	-	-	-	\vdash					\vdash	+	+	+
ă	Mieko	Bos d 8	Casein	-	+	\rightarrow	+	\vdash	-	+	-	\vdash	_			$\overline{}$	\rightarrow	+	+	+
- 0	Biatho tatha	Lactoferrin Gal d 1	Transferrin Overnucoid	+	+	\rightarrow	-	-	-	_	-	\vdash	-			-	\rightarrow	+	+	+
e	Białko jajka	Gal d 1		+	+	\rightarrow	+		-	_	1	\vdash	-		-		\rightarrow	+	+	+
9		Gal d 3	Ovalbumin Conalbumin	-	+	\rightarrow	_		-	_	1	\vdash				$\overline{}$	\rightarrow	+	+	+
pochodzenia	Zółtko jajka	Gal d 5	Livetin (serum albumin but speci	es specif	fic)	-			\rightarrow								\vdash	+	+	+
Ď.	Karp	Cyp c 1	Parvalbumin															+	+	\pm
-	Dorsz	Gad ∈ 1	Parvalmumin																	7
E	Krewetka	Pen a 1	Tropomyosin																	
		Pen i 1	Trepemyesin																	
- 중	I																			
Pokarmy		Pen m 1	Tropomyosin																	
Pok			Trepemyesia							\pm									Ŧ	

Causative food	Pollen cross- reactive components	Lipid transfer proteins	Pollen non-cross-reactive components
Peanut	Ara h 8*	Ara h 9	Ara h 1 Ara h 2; Ara h 3
	Ara h 5*		Ara h 4 Ara h 6; Ara h 7
Hazelnut	Cor a 1*	Cor a 8	Cor a 9
	Cor a 2*		Cor a 11
Soybean	Gly m 4*	Gly m 1	Gly m 5
	Gly m 3*		Gly m 6
Wheat	Tri a 12•	Tri a 14	Tri a 19 (ω-5 gliadin) Tri a 21 - alfa gliadin Tri a 26 - HMW glutenin Tri a 28 - AAI dimer 0.19

Ana	risk	\rightarrow

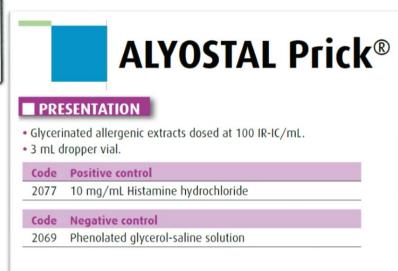
PRP-10
Profilin
Lipid transfer proteins
Storage seed proteins, albumins, and globulins

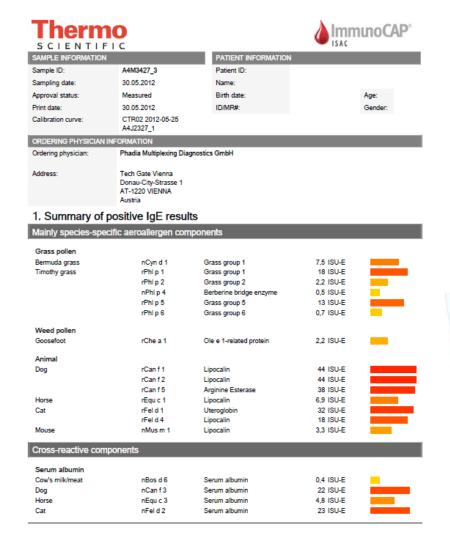
The table shows how the component-resolved diagnostics can be used to estimate the risk of anaphylaxis (Ana) in a patient sensitized to various pollen-related plant allergens. Patients who are sensitized to allergens in the profilin and pathogenesis-related-protein-10 (PRP-10) groups (shown in green and purple) have a relatively low risk of anaphylaxis. Those sensitized to lipid transfer proteins (shown in orange) have an intermediate risk. The highest rate of anaphylaxis is observed in patient sensitized to more stable proteins that are not cross-reactive with pollen allergens, such as storage seed proteins, albumins, and globulins (shown in yellow). The specific allergens circled in red have been implicated in systemic reactions.

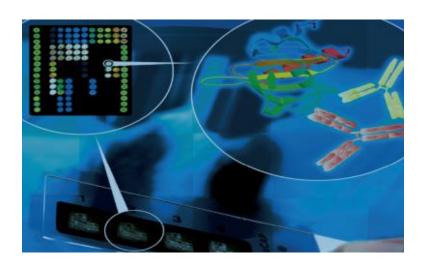
* Reactive with birch tree pollen.

Reactive with timothy grass pollen.

In vivo diagnostics by Allergopharma and Stallergenes products


Testkit K consists of the same materials as Test Kit G plus additionally a broader range of allergens.



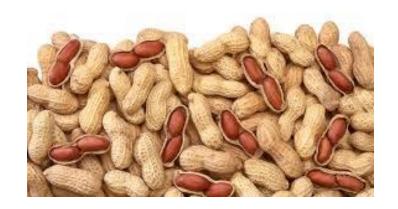


True Test,
Transdermal skin
patch test used to
facilitate the
diagnosis of
allergens that
induce contact
dermatitis

Molecular Allergology ImmunoCAP ISAC slgE 112

• uKnow™ Peanut ImmunoCAP® Molecular Allergy Test Cutting-edge blood test identifies whether people are allergic to dangerous or more-benign peanut proteins, helping parents and patients create a food allergy management plan. *ThermoFisher Scientific*

PEANUT


Ara h 1 - Storage protein, 7 s globulin

Ara h 2 - Storage protein, 2 s albumin

Ara h 3 - Storage protein, 11 s globulin

Ara h 8 - PR-10

Arah 9 - LTP

. IgE results sorted by protein group

Mainly species-specific food components	Mainly	species-	specific foo	d compone	nts
---	--------	----------	--------------	-----------	-----

Egg white	nGal d 1	Ovomucoid	0,6 ISU-E	
	nGal d 2	Ovalbumin	2,8 ISU-E	
	nGal d 3	Conalbumin/Ovotransferrin	<0.3 ISU-E	
Egg yolk/chicken meat	nGal d 5	Livetin/Serum albumin	<0.3 ISU-E	
Cow's milk	nBos d 4	Alpha-lactalbumin	53 ISU-E	
	nBos d 5	Beta-lactoglobulin	43 ISU-E	
	nBos d 8	Casein	16 ISU-E	
	nBos d lactoferrin	Transferrin	<0.3 ISU-E	

ISAC Standardized Units (ISU-E)	Level	
< 0.3	Undetectable	
0.3 - 0.9	Low	
1 - 14.9	Moderate / High	
•	Very High	

Mainly species-specific	food component	s		
Egg white	nGal d 1	Ovomucoid	0,6 ISU-E	
	nGal d 2	Ovalbumin	2,8 ISU-E	
Cow's milk	nBos d 4	Alpha-lactalbumin	53 ISU-E	
	nBos d 5	Beta-lactoglobulin	43 ISU-E	
	nBos d 8	Casein	16 ISU-E	
Walnut	nJug r 2	Storage protein, 7S globulin	2 ISU-E	
Mainly species-specific	aeroallergen cor	mponents		
Grass pollen				
Bermuda grass	nCyn d 1	Grass group 1	20 ISU-E	
Timothy grass	rPhl p 1	Grass group 1	33 ISU-E	
	nPhl p 4	Berberine bridge enzyme	2,4 ISU-E	
Tree pollen				
Japanese cedar	nCry j 1	Pectate lyase	4,4 ISU-E	
Cypress	nCup a 1	Pectate lyase	62 ISU-E	
Olive pollen	rOle e 9	Beta-1,3-glucanase	2,2 ISU-E	
Plane tree	nPla a 2	Polygalacturonase	2,2 ISU-E	
. 13.10 (1.00		. 0, galacta. 0.1.000	_,	
Weed pollen				
Ragweed	nAmb a 1	Pectate lyase	45 ISU-E	
Wall pelitory	rPar j 2	Lipid transfer protein (nsLTP)	1,1 ISU-E	
Saltwort	nSal k 1	Pectin methylesterase	1,2 ISU-E	
Mold				
Alternaria	rAlt a 1	Acidic glycoprotein	32 ISU-E	
Mite				
	rDorf?	NDC2 family	20 1011 5	
D. farinae (HDM)	rDer f 2	NPC2 family	38 ISU-E	
D. pteronyssinus (HDM)	rDer p 2	NPC2 family	13 ISU-E	
Cockroach				
Cockroach	rBla g 1	Cockroach group 1	0,6 ISU-E	
COMOUNT	3	G r	,	

We want to propose a Complete Allergy Products kit to doctors visiting Allergic / Asthmatic patients

ASTHMA PATIENTS
MONITORING TOOLS

ANTI-ALLERGY BED COVERS

ALLERGEN IMMUNOTHERAPY
TREATMENTS

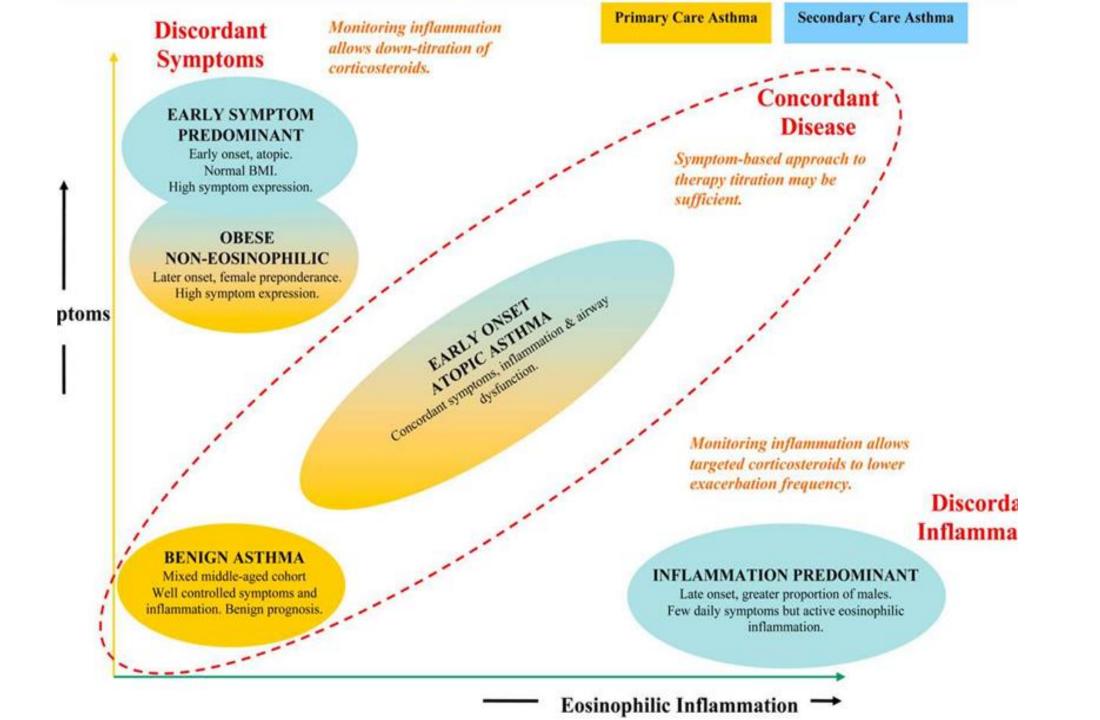
NEW PRODUCTS TO COME

ALLERGY DIAGNOSIS

SKIN PRICK TESTING

ATOPIC DERMATITIS PATCH TESTING

Guide to Interpretation of Feno Values in Patients with Airway Disease.


Do not use this guide if the patient is a smoker. Data are inconclusive for current smokers. FE_{NO} values are complementary to spirometry values in the diagnosis and assessment of airway disease.

	LOW	NORMAL		HIGH
Eosinophilic inflammation	Unlikely	Unlikely	Present, but mild	Significant
mammadon		AI	DULTS	
FE _{NO} (ppb)*	< 5	5–25	25–50	> 50 (or a rise of >60% since previous measurement)
		CHILDRI	EN <12 years	
FE _{NO} (ppb)*	< 5	5–20	20–35	> 35 (or a rise of >60% since previous measurement)
* At 50 mL/s flow rate	Consider: Smoker? Children: PCD (2) CF (3) Chronic lung-disease of prematurity	If symptomatic, review diagnosis (1) If asymptomatic and on treatment: Implies that patient is compliant Consider dose reduction or withdrawal of anti-inflammatory drug	Interpretation based on clinical presentation If symptomatic and on anti-inflammatory treatment, consider: Infection as reason for worsening High levels of allergen exposure Dose increase Adding LABA In addition for children Check - compliance	Consider atopic asthma if the history is appropriate A positive response to a trial of inhaled or oral steroids is likely In addition for children If combined with any objective evidence of reversible airway obstruction, asthma is very likely If symptomatic and on anti-inflammatory
	(1) Consider: Neutrophilic anxiety/hyperventilation, v dysfunction, gastroesophag rhinosinusitis and cardiac in addition for children: W bronchitis, ENT disorders a deficiencies. (2) Primary ciliary dyskines nasal NO). (3) Cystic fibrosis. (4) For children, consider n inhaler and spacer if patier using a dry powder device. The table is partly based on Pijnenburg MW, Smith AD, JC. Exhaled nitric oxide me clinical application and int Thorax 2006; 61: 817-27.	ocal cord geal reflux, disease. heezy and immuno- sia (check metered dose at is currently n Taylor DR, De Jongste pasurements:	- inhalation technique (4) If asymptomatic and on treatment: No change of anti- inflammatory drug dose, if patient is stable	treatment: Check compliance inhalation technique (4) drug dose Consider high levels of allergen exposure imminent exacerbation or relapse steroid resistance (rare) If asymptomatic and on treatment: No change of anti-in- flammatory drug dose, if patient is stable

ECP

- Sensitivity
- Detection limit is <0.5 μg/l.
- Specificity 87%

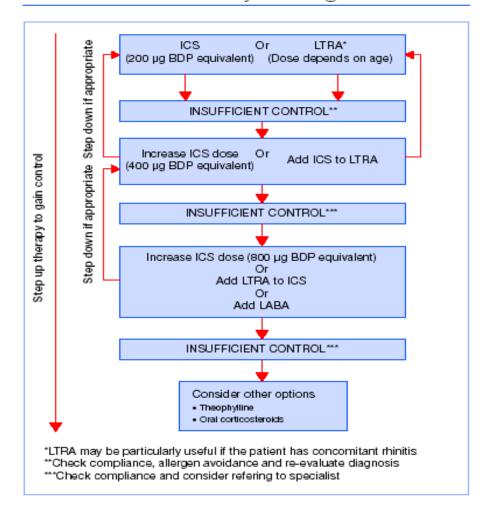
Asthma Phenotypes

- :- irigger-induced astnma
- 1) Allergic
- 2) Non-allergic
- 3) Aspirin-exacerbated respiratory disease (AERD)
- 4) Infection
- 5) Exercise-induced
- Clinical presentation of asthma
- 6) Pre-asthma wheezing in infants
- · Episodic (viral) wheeze
- - Multi-trigger wheezing
- 7) Exacerbation-prone asthma
- 8) Asthma associated with apparent irreversible airflow limitation
- Inflammatory markers of asthma
- 9) Eosinophilic and neutrophilic asthma

PRACTALL (PEAACI/AAAAI) Allergy 2008:63:5-34

Diagnosis and treatment of asthma in childhood

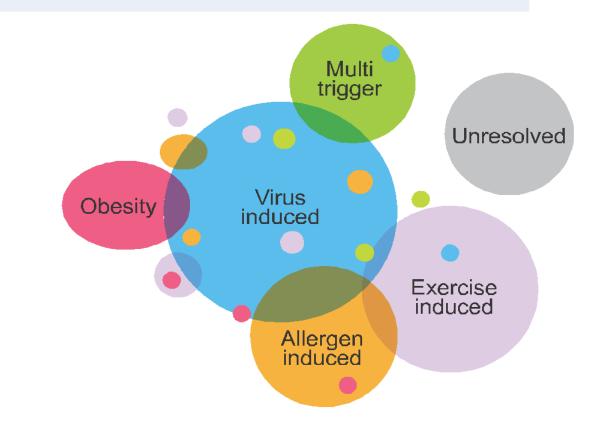
PRACTALL EAACI/AAAAI Consensus Report: Pocket Guide

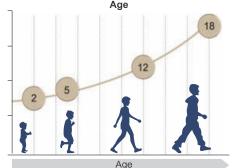


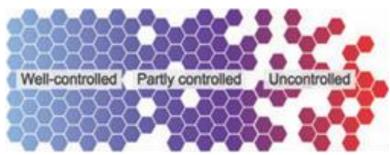
Adapted from Bacharier LB et al. Diagnosis and treatment of asthma in childhood: a FRACTALL consensus report. Allergy 2008;63:5–34.

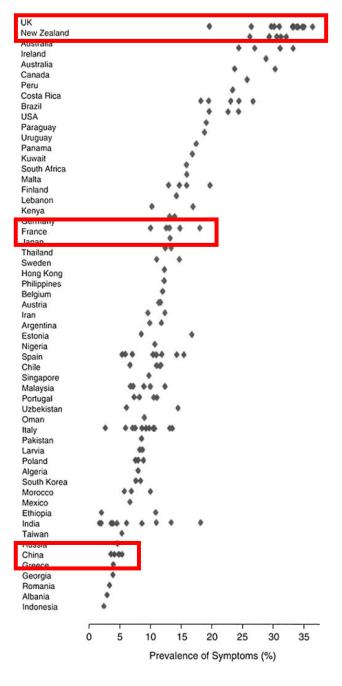
www.eaaci.net www.aaaai.org www.charite.de

Algorithm of preventive treatment for asthma in children >2 years of age

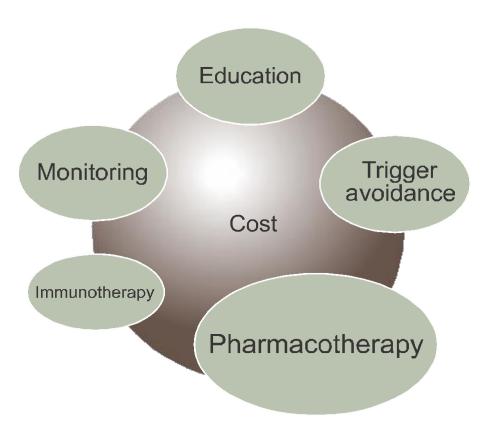

International consensus on (ICON) pediatric asthma

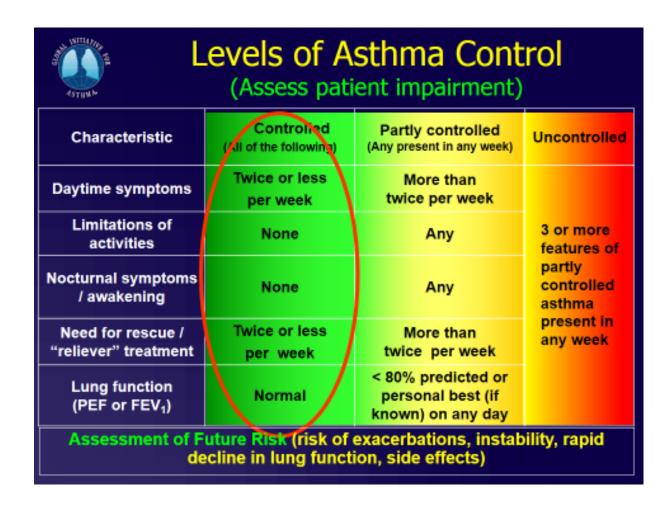

N. G. Papadopoulos1, H.


Arakawa2, K.-H. Carlsen3, A. Custovic4, J. Gern5, R. Lemanske6.


P. Le Souef7, M. Ma" kela" 8, G. Roberts9, G. Wong10, H. Zar11, C. A. Akdis12, L. B. Bacharier13, E. Baraldi 14, H. P. van Bever 15, J. de Blic 16, A. Boner 17, W. Burks 18, T. B. Casale 19, J. A. Castro-Rodriguez20, Y. Z. Chen21, Y. M. El-Gamal22, M. L. Everard23, T. Frischer24, M. Geller25, J. Gereda26, D. Y. Goh27, T. W. Guilbert28, G. Hedlin29, P. W. Heymann30, S. J. Hong31, E. M. Hossny32, J. L. Huang33, D. J. Jackson34, J. C. de Jongste35, O. Kalayci36, N. Aı"t-Khaled37, S. Kling38, P. Kuna39, S. Lau40, D. K. Ledford41, S. I. Lee42, A. H. Liu43, R. F. Lockey44, K. Lødrup-Carlsen45, J. Lo" tvall46, A. Morikawa47, A. Nieto48, H. Paramesh49, R. Pawankar50, P. Pohunek51, J. Pongracic52, D. Price53, C. Robertson54, N. Rosario55, L. J. Rossenwasser56, P. D. Sly57, R. Stein58, S. Stick59, S. Szefler60, L. M. Taussig61, E. Valovirta62, P. Vichyanond63, D. Wallace64, E. Weinberg65, G. Wennergren66, J.

Wildhaber67 & R. S. Zeiger68



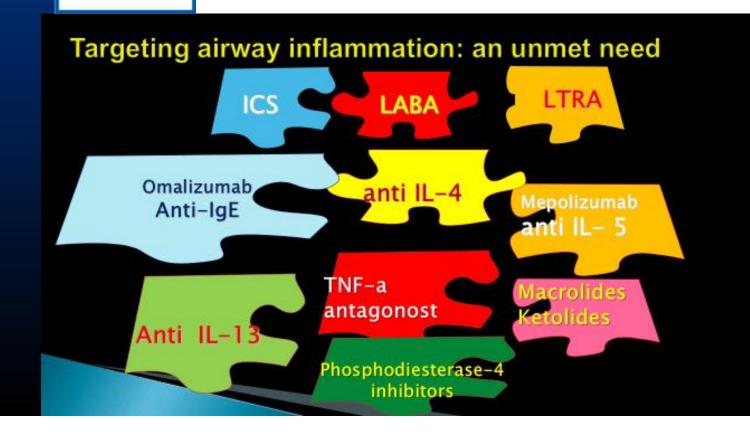

Figure 3 Asthma management should be 'holistic', including all the elements necessary to achieve disease control: patient and par- ent education, identification and avoidance of triggers, use of appropriate medication with a well-formed plan, and regular moni- toring, are all crucial for success. Management should be adapted

Guideline Update

- Phenotype-sj
- Probabilistic be helpful in

Ventolin® HFA

• First aerosol MDI with an integrated dose counter, allowing parents and patients to track inhaler use more easily — a life-saving change.


Xolair® Omalizumab anti-IgE

• First biologic medication interrupts allergic asthma episodes before they can get started – patients have called it life-changing. *Genentech*

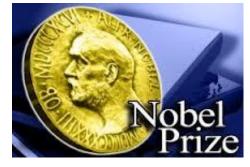
Xolair Omalizumab

REDUCE						
TREATMENT STEPS						
V	STEP	STEP 2	STEP 3	STEP 4	STEP 5	
	asthma education					
environmental control						
	as needed rapid- acting ß2-agonist	as needed rapid-acting ß₂-agonist				
		SELECT ONE	SELECT ONE	ADD ONE OR MORE	ADD ONE OR BOTH	
	OPTIONS	low-dose ICS*	low-dose ICS plus long-acting B2-agonist	medium- or high-dose ICS plus long-acting B2-agonist	oral glucocorticosteroid (lowest dose)	
	CONTROLLER O	leukotriene modifier**	medium- or high-dose ICS	leukotriene modifier	anti-lgE treatment	
			low-dose ICS plus leukotriene modifier	sustained-release theophylline		
	3		low-dose ICS plus sustained-release theophylline			

*inhaled alucocorticosteroids

^{*} receptor antagonist or synthesis inhibitors

BERLIN-CHEMIEMENARINI



20 mg tablets contains:

- The active substance is bilastine. Each tablet contains 20 mg of bilastine.
- The other ingredients are cellulose microcrystalline, sodium starch glycolate type A (derived from potato),
- colloidal anhydrous silica, magnesium stearate.

The new non-sedating antihistamine

Nixar is inducated for children after 12 years

Bilastine 20mg: Nixar, Bilastina, Ilaxten, Drynol, etc.

Bilastine approved in :

Spain, the UK, Ireland, Portugal, Germany, Denmark, Bulgaria, Sweden, Belgium, Lithuania, Georgia, etc. for treating seasonal & perennial allergic rhinoconjunctivitis & urticaria.

Nixar

The new non-sedating antihistamine

Pharmacology

Bioavailability

Interaction with food and grapefruit juice

Concomitant intake of bilastine 20 mg and

- food or
- grapefruit juice
 reduces the bioavailability of bilastine by 30%
- → Intake 1 hour before or 2 hours after intake of food or fruit juice

SmPC Bilastine

Taking other medicines

In particular, please discuss with your doctor if you are taking any of the following medicines:

Ketoconazole (an antifungal medicine)

- Erythromycin (an antibiotic)
- Diltiazem (to treat angina)
- Cyclosporine (to reduce the activity of your immune system, thus avoiding transplant rejection or reducing

disease activity in autoimmune and allergic disorders, such as psoriasis, atopic dermatitis or rheumatoid arthritis)

- Ritonavir (to treat AIDS)
- Rifampicin (an antibiotic)

Pharmacology

*H*₁- receptor selectivity

vs. other histamine receptors 1

No affinity for other histamine receptors

- $(H_2, H_3 \text{ and } H_4)$

vs. other receptor types 1

No clinically relevant affinity for 30 other receptors, including:

- Serotonin → (Increased appetite) ²
- Acetylcholine → (Dry mouth, urinary retention and sinus tachycardia)²
- Noradrenaline → (Hypotension, dizziness and reflex tachycardia)²
- Bradykinins
- Leukotrienes
- Calcium ...
- → Bilastine showed no affinity for other H- receptors
- → Bilastine showed no affinity for other importar receptors

¹ Corcóstegui R. et al.; Drugs R D 2005; 6 (6): 371-384 ² Simons F.E.; N Engl J Med. 2004 Nov 18;351(21):2203-17

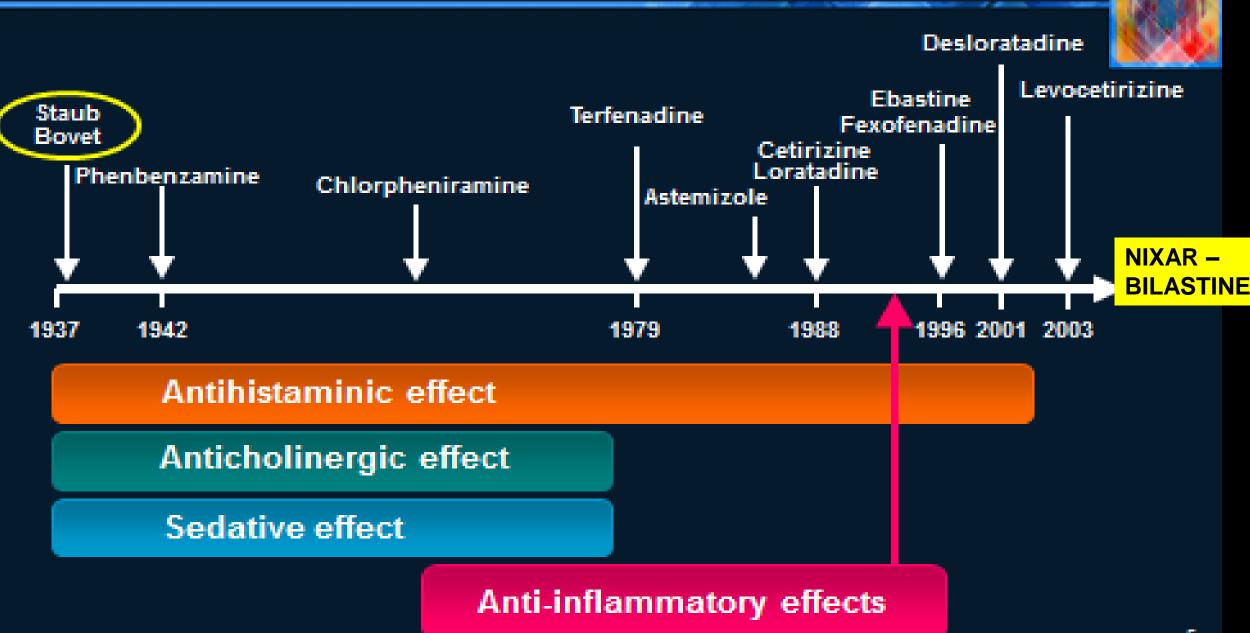
ımine

Who needs?

Patient with rhinitis

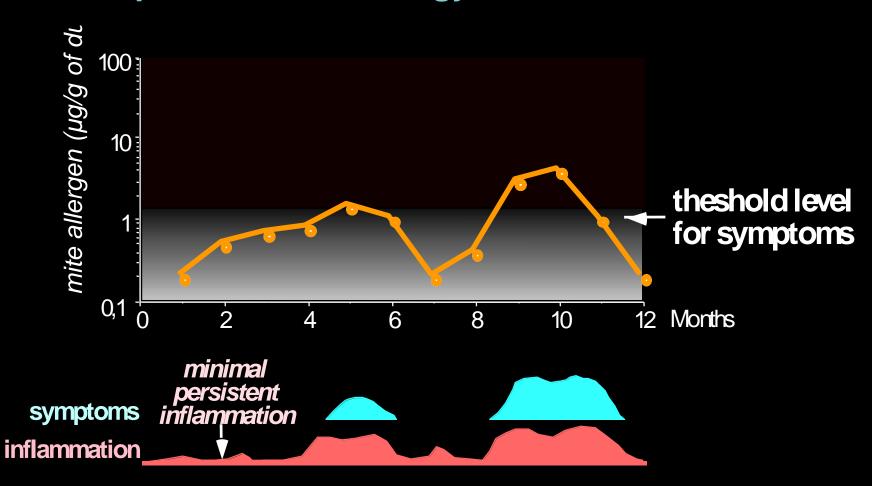
Rhinoconjuctivitis

Urticaria



Key Messages

Bilastine the new non-sedating antihistamine fully complies with ARIA and EAACI guidelines


- Effective in.alergic rhinitis and urticaria
- Dansted ros etcolicanction: 1 hour
- Donation afiantion action: 24 hours
- Side effects on placebo level
- Sledstidation: no somnolence or fatigue
- NY PASCA bolisation (CYP450)
- **Nhoeirateriactisc** n with other drugs at hepatic level
- Elelarity? Claire lyta nyd tha teeral ş lycipla trienzri, clae piateci rompa amuliaret ?mpairment
- Not potientication to be telefectified to a had head head head a least a head head a least a
- Nhopianinpaienmb ent tob f viliniey i performance ?ce
- Convenient to use?

History of Antihistamines

Concept of "minimal persistent inflammation" Ciprandi et al, J Allergy Clin Immunol 1996

EAACI / GA²LEN / EDF / WAO Urticaria Guidelines: 2012 Revision and Update

Second-generation H₁-Antihistamine (sgAH)

If symptoms persist after **2 weeks**

Increase sgAH dose (up to 4x)

If symptoms persist after **1-4 weeks**

Add Omalizumab, Cyclosporine A, or Leukotrieneantagonist

Short course systemic corticosteroid may be tried for exacerbations

PESSIMIST

SEES THE

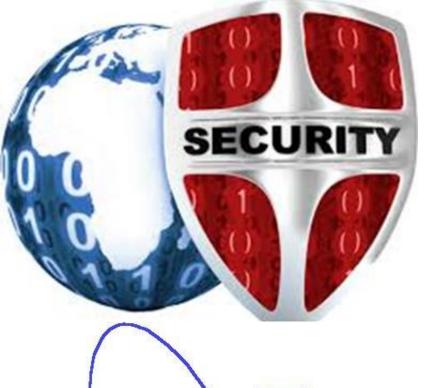
DIFFICULTY

IN EVERY

OPPORTUNITY

AN

OPTIMIST


SEES THE

OPPORTUNITY

IN EVERY
DIFFICULTY

SIR WINSTON CHURCHILL (1874 - 1965)

New antihistamine NIXAR – BILASTINE: Perspectives in Allergy

Thank you for your kind attention!!!

